AD-A062 B15 CARNEGIE=MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/6 9/2 e
TARTAN LANGUAGE DESIGN FOR THE IRONMAN REQUIREMENT NOTES AND EX==ETC(U) '
JUN 78 M SHAW, P HILFINGERs» W A WULF rnezo-n-c-oo'u

UNCLASSIFIED CMU=CS=78=132

.| ElEEEEEEEEE
lllllllw

:2e izs

o
i

I L

22 Tl e

—— e
~)
T

I

MICROCOPY RESOLUTION TEST CHARI
AL

ey

Sicas ks Tl e

Jm——

_TARTAN

Language Design for the Ironman Requirement:

" Notes and Exam i
RO e f#?i> [

e ¥ d\ ‘_____:::_‘7

/ PWHW f

wm A |Wuif
Computer Sciencs Depariment
Carnegie-Mellon University
Pittsburgh, Pe. 15213
|\] uow W78 /

N
Abstract: The Tartan language was desi as an experiment to see whether the [ronman

requirement for a common high-order programming language could be satisfied by an extremely
simpis language. The resuit, Tartan substantisily mests the Ironmen requirement. We believe it
is substantislly simpler than the four designs that wers done in the first phess of the DOD-1
effort The language definition appesrs in a campanion report; this report provides a more
expository discussion of some of the language’s features, some examples of its uss, and a
dlmdonofmfﬁliuammdmwmwmdrdwvdynmm&

AIR FORCE OFFICE OF SOTTNTITIC RWERARCH (AFSC)
NOTICE OF TRANSMITTAL TO TOC
This techuical 1 ews) and 4

5
approved for pubtl.: : Lisy st 2oU=12 (7h)
Distribw= ion is unlim:ited,

A. D. BLOSE

Technical Information Officer

..,4,

ed by the Defense Advanced Resesrch Projects Agency
tored by the Air Forcs Office of Scientific Resesrch).

Ag 33 OSL

contract

AB

sl i e S i it I D S ¥ 2,

j Tarten: Notes and Exemples

b 1. Netes on Important [ssues

1.1. Vocabulary
1.2. Scope and Extent
1.2 1. Scope
1.22. Extent
1.3. Modules and Routines
1.3.1. Modules
1.3.2. Routines
1.4, Generic Definitions
1.4.1. Writing snd Using Generic Definitions
1.4.2. Seperste Oefinitions
1 1.5 Types ’
1.5.1. Cheracteristics and Altributes
g4 1.5.2 Type Names
1.5.4. Declarations
1.5.5. Type Checking
1 1.5.6. Oefining Types
1.5.7. Qperations on New Types
'y 1.6. Perallel Processes
! 1.6.1. Activations
1.6.2 Fork and Join
1.6.3. Activation Names
1.7. Unresoived Issues
1.7.1. Machine-Dependent Code
1.7.2 Simulation
1.7.3. Definition of Integers
1.7.4. Low-Level Input and Output
1.7.S. Higher-Level Synchronization

2. Programming Examplog

k| 2.1. Simple Static Data Type

i 2.2. Simple Dynamic Data Type
@ 2.3. Selecting Representations
2.4, Safe Data

3. Optional Additions to the Language
References

DOV ONNOVDLPWWWNNN~ -~

e o Y e . . i
e o G e e e S o
\

it

Tartan: Notes and Examples ol

1. Notes on Important issues

The Tartan reference manual is the defining document for the Tartan language. However, some of
the facilities designed in response to the ironmen requirement deserve more unified and expository
explanations than can be included in a reference manual. This chapter discusses the Tartan solutions
to several important problems posed by the Ironman requirement.

* The Tartan language draws heavily on the Pascal tradition. Both the reference manusl and these ‘
3 notes assume familiarity of Pascal-like languages. These notes also assume familiarity with the Ironman |
e requirements (1] and the Tartan reference manual [2]

1.1. Vocabulary

A Tartsn program is made up of definitions, declarations, and (executable) statements. A definition
binds an identifier to a module, routine (function, procedure, or process), type, or exception: it is
processed during transiation. A declaration binds an identifier to an object (i.e., a variabie or value); it
is processed at run time, usually to alfocate storage. Executable statements ars eisborated at run time
to effect computations -- menipulation of vaiues.

Identifiers can be bound to modules, routines, types, objects, statements, and exceptions. Individual
identifiers are qualified with the names of the modules in which they are defined in order to avoid 3
conflicts with names declared in other modules.

The computation described by a program is carried out by elaborating tive program. We use the
word “elsboration”, in preference to "execution®, to connote actions tsken during transistion as well as [3
those taken during execution. Elaboration may be thought of as sn idealized direct execution of the
textual version of the program The effect of elaborating each construct in the language is given in the
referencs manual.

Although the language prohibits making a declaration thet gives new meening to an identifier in a
g ¥ given scope, duplicate identifiers might arise in three situations. These situations, and the way Tartan
29 deasls with them, are:
| - The same identifier is exported from two modules. The ambiguily is prevented by name B
18 qualification: All identifiers exported from a module sre prefixed with the name of the

module that expecrted them: the prefix is separated from the identifier by an apostrophe.
Thus if identifier x is exported to the same scope by both modules M and N, we write A

M*x ! for the x exported from M
N®x | for the x exported from N

The qualification may be omitted if no ambiguity arises.

=

- An identifier is used as an overloaded routine or type nsme. That is, the same routine name
is given several definitions with different numbers or types of perameters. Operator
overioading is permitted so that similar operstions on distinct types, particulerly infix
operstions, can be given the same names. The identifiers for the routines or types are
disambiguated by examining the parameter types snd choosing the routine whose formai ;
parameter types are matched by the types of the actusis. A similer situstion exists with v
identifiers for families of related types. In order to discuss these situstions, we introduce the 4
notion of signature:

- The signsture of a routine is the routine name together with its formal perameter types.
The type of the value returned by a function is not included in its signature.

- The signature of a type is its simple type name together with its generic characteristics.
Generic characteristics are discussed in Section 1.5.1.

- A literal or constructor might potentisily be of two or more different types. The ambiguity is
resolved by qualifying the litersl or constructor with the intended type, including its
attributes.

Tartan: Notes and Examples 2=

1.2. Scope and Extent

Scope determines the interpretation of identifiers, so all the text in a given lexical scope sheres the
same vocabulary -- definitions, variables, etc. Scope rules permit some identifiers to be used with the
same inlarpretation in multiple lexical scopes.

The extent of a variable is its lifetime -- the lime during which it affects or is affected by the
elaboration of the program. The interaction of control and lexical structure determines extent. Binding
is the association of identifiers with program entities (objects, modules, routines, types, statements, and
exceptions). The bindings in effect at any time result from the interaction of control and lexical scope.

1.2.1. Scope

Lexical structure is imposed on Tartan programs by blocks and modules, which delimit lexical
scopes. There are no restrictions on the ways thess scopes may be nested. Both constructs may use
identifiers defined in other scopes: both may define identifiers that can be used in other scopes.
Scope rules govern the legal bindings of identifiers in a lexical scope to program entities: they also
control the importing and exporting of identifiers to other scopes. Blocks and modules differ only in
their scope rules and in their effects on the extent of verisbles. Tartan has two scope rules:

- An open scope inherils (imports automatically) all the identifiers that are defined in its
enciosing scope. [t may not export any identifiers to its enclosing scope. Blocks are open
scopes except when used as routine bodies.

= A closed scope inherits all identifiers that are defined in its enclosing scope except those for
lsbels and objects.! It may explicilly import identifiers for objects (variables and constants),
provided they have global extent. A closed scope that is a module may export identifiers that
neme verisbles, definitions, or exceptions; the exported identifiers have the status of any
other identifiers defined in the enclosing scope. All modules are ciosed scopes, 8s are blocks
when they are used as routine bodies.

Identifiers that are exported from an inner scope or imported from an outer scope have the status of
identifiers defined in the scope. Redefinition of identifiers within a scope is not permitted. The
convenience of being sble to do so does not offset the danger of confusion. This does not, however,
prohibit overioading of routines nemes: the differences in signatures suffice to prevent confusion. In
addition, the seme identifier might be imported with different meanings from two different modules:
such identifiers are qualified with the names of the modules in which they were defined Thus they
are not duplicate definitions. Similerly, litersls and constructors are qualified with their types to
prevent ambiguity. In either case, the module or type quelifier may be omitted if no ambiguity arises.

1.2.2. Extent

Extent rules govern the lifelimes of objects. Extent is controlled by blocks, independent of whether
they correspond to open or closed scopes. Nothing except blocks controls extent. The static data of a
block is allocated when the declerations of the block are elaborated (in lexical order) at block entry.
It is desllocated when the block is exited or terminated Note that modules do not define extents, so
the extent of data defined in a module coincides with the extent of its surrounding block.

Vslues of dynamic types point to dynamically sllocated veriables. The type of object that may be
pointed at is pe of a dynamic type. The extent of dynamically allocated variables is coincident with
the blocks in w .ch the associated dynemic types are declered Since type names sre not accessible
outside the blocks in which they are defined, no references cen outlive the block with which the
extent is associated.

1 iterais and identifiers for variabies that sre declered manifest are inherited.

g R ST T 5 S N Y o sy pisale g ok e T e g el e S e

¥
i

el

Tarten: Notes and Examples -3-

1.3. Modules and Routines

Modules and routines are closed scopes. Modules serve as an encapsulation mechenism, protecting
the privacy of definitions and declerstions without restricting their extent. Routines are used for
program structuring and abstraction of operstors; they define operstions thet mey be invoked during
elaboration of a program

1.3.1. Modules

A module is a closed scope that allows local definitions to be shared without making them public.
It siso serves to bundie up relsted definitions for administrative (program organization) purposes. It
E mey export identifiers for definitions and objects to the scope in which it is defined A module has no
parsmeters.

A module is purely a scope-defining device. Its elaborstion takes place during the elaboration of
declarations for the block in which the module is defined This elaborstion consists of elsborating the
definitions and deciarations of the module in lexical order, then elaborating the statements of the
module.

! A module or routine inherits identifiers for definitiens (modules, routines, types, and exceptions),
] literals, and manifest cbjects from its enclosing scope. It may explicitly import identifiers of objects
from that scope, provided the objects have global extent A module, but not @ routine, may export

identifiers other then lsbels to its enclosing scope.

1.3.2. Routines

A routine is a closed scope whose body is a block. Thus its body controis extent for local
declarstions, but does not inherit identifiers for varisbles or non-manifest constants. The <formais> list
declares the identifiers for parsmeters.

i A routine may be a function (func), which returns a value and has no visible side effects: it may be
i a procedure (proc), which can modify its parameters but must be called as a statement; or it may be a
{ process, which is a potentisily-parallel procsdure. Special lype-specific routines for many types are
listed in the Tartan Reference Manual.

The symbols for the unary and binery operstors are used as routine names in order to provide
overioaded definitions for those operstions.

If a <binding> in a routine header is omitted, it is assumed to be const The result binding may be
used only in <formeis> lists of procedures. Functions are permitted to specify ver parameters in order
to avoid the copy associasted with const! However, as noted below, visible side effects on such
parameters sre prohibited No duplication of identifiers within the <formals> list is permitted. Further,
formal persmeter names may not conflict with decisrations or imports in the routine body.

It a routine name is overicaded, the definition whose signature matches the call is selected.

Ouring elaboration of a function, assignment to 8 verisble that is not local to the function body (or to
3 the body of sny routine it invokes, directly or indirectly) is permitted only if the function is never
{ invoked in 8 scope where such & chenge is mede to a verisble or component thet is directly
k| accessible by the caller. Such verisbles may be imported by the function from @ module within which
the function is defined They .may siso be fieids of var parameters if the type of the parsmeter is
defined in the same module as the function and the field neme is not exported An example of the

latter case appears in section 2.4.

. This is a compromise solution to the side-effect problem. Many routines are quite ressonsbly coded
as velue-returning: Get of section 2.4, monitoring routines, rendom number generators, and Pop for
stacks. However, the current state of the art does not offer s sherp rule from distinguishing sale from
unsafe side effects.

lin the presence of parallelism, it may not be sefe to oplimize away the copy of a const parameter
even |f the routine does not alter it

Tartan: Notes and Examples -4~

Actusl parameters are malched with formsl paramsters pasitionally. They must satisfy restrictions on
type, binding and aliasing.

- The type of an actual parameter is acceptable if its <type neme> exactly metches the <type
name> of the corresponding formal parameler. Type attributes (instantiation psrsmeters of a
type) play no role in type checking.

- The binding of the actusl perameler is acceplable if it matches the <binding> of the
corresponding formal parameter according to the following rules:

It the formal parameter is then the actusl parameter may be ' 3
var <ver id>
const <expr>
manifest any manifest <expr>
result <ver id>

~ Finally, the set of actual parameters must satisfy ths following nonalissing restriction: A
verigble may not be used in more then one var or result position of a single procedure or
process call. For the purposs of testing this restriction, imported variables are considered to
be ver parsmeters.

1.4. Generic Definitions

A facility for making generic definitions is provided in order to allow the programmer to write a
single textual definition that serves as an abbreviation for many closely-related specific definitions. i
Modules and routines may be defined genericaily.

A generic definition is instantiated by referring to it as the body of a module or routine definition.
The effect of the instantiation is as if the generic definition were lexically substituted in place of the
reference to it That is, the body of the module or routine being defined becomes a copy of the
generic definition.

1.4.1. Writing and Using Generic Definitions

A generic definition is syntactically like the corresponding specific definition except that it is
prefixed by the word generic and it may have a set of generic parsmeters (enciosed in square
brackets) after the neme of the construct being defined. The perameters may be any defined
identifiers, including those for variasbles, routines, types, or modules, or any expression When the
generic definition is instantiated, the text of the actusl parameters replaces the identifiers that
represent the formal parameters. The substitution is done on a lexical, rather that a strictly textual,
basis. That is, the identifiers in the generic definition are rensmed 8s necessery to avoid conflicts
with the identifiers in the actusl parameters.

For example, the collection of functions

fune F2(X:int)ysint; begin y 1= 2 # X ond

fune F3(XsInthytint; begin y 1o 3 # X ond

fune F4(X:Int)yiint; begin y te & & X end
and 30 on

can be defined by the generic definition

generic fune F (Ml tsint] (Xsintlysint; begin y 1= Muit # X ond
and the specific instantistions

fune F2 is F(2)
fune F3 is F (3] ’
fune Fé is F(6)

and 80 on

An instantiation of a generic definition may be used as the body of a specific module or routine. The
ususl restrictions on defining new identifiers apply to the module or routine being defined in terms of a
generic.

Generic type definitions arise from generic modules. They are instantiated when the module is
instantisted. Thereafter, they may be used in declarations or definitions.

A S . S SR 5% N R N R

] Tartan: Notes and Examples B

If the generic definition has generic paramelers, the actual persmeters supplied with the
instentiation must have correponding types and be syntactically suitable for substitution

If a generic definition is instantiated more than once in & scops, ambiguous nemes may be
introduced. The usual rules for resolving such ambiguilies apply.

1.4.2. Separate Definitions

S Tartan supports separate definitions, and potentislly separste compilation, in the same way as it
supports generic definitions. A program mey be broken into separstely defined segments. This
decomposition must take piace in the giobal extent. The units of separate definition are modules and
routines. The definition

-
g module Q is sssumed(])

] inawmmcnoddmﬁmhmahwwmu"h(m‘toly
: defined) text of Q had been substituted for “is assumed(l)”. The identifier | refers to a file, library, or |
other facility for storing separately defined segments. The relation between the identifier [and that |
storage facility mey be established by 8 pragmat |

Suppose we want to develop and maintain a program with the following structure:

begin 3

module COM: begin export X; . . . end;]

module M1: begin import X,Y;: export Z; . . . ends

module M2; i
begin import X,Z; {
export H: i
module M3; begin . . . end;

s gl oot

ends

ver Y . . o8

! Main program using W, X, Y, 2
onds

It the definitions of COM, M1, and M2 are stored in a library, the following program will heve the
same effect: 1

begin

preg Require (ComDef,L1B.CON. TXT): Requirs(MlDef,LIB.M1.REL);
Require (M20ef,LIB.M2.REL) s garps

module COM is sssumed (COMOef);

module M1 is sssumed (M1Def);

module M2 is sssumed (M20ef);

ver Y: . . o3 1

! Main program using W, X, Y. Z

ends g

We assume here that the second srgument of the Require pragmat is interpreted by the system as a
pointer into a library. From the stendpoint of the language, it is 8 matter of oplimization whether the
separate definitions are included as text or seperalely transiated and linked in.

In order to perform independent transiations of 8 seperately defined module, it is necessary to !
embed it in an environment that provides the definitions it depends on. This environment must form a
complete program. The transistion system is assumed lo provide commands for selecting which
. components of such a transistion to ssve and for determining where snd in what form they sre saved.
: lnthccxompl«hcu,wowmslmld-muhdmyvdthammmmwmmlnthc
example above, module COM Hoes not depend on any external definitions. In order to compile it
' separately, we write simply:

prag Save (Com,L18.COM. TXT); geeps
begin

module COM; beginexport X3 . . . end;
end

Module M1 depends on the X exported from COM and the Y deciared in the mein program. To
transiate M1 separately, we must therefore write:

———

2, ST i U ARy R A 2 SR e S L

Taertan: Notes and Examples -6~

prog Seve(Ml,LIB.ML.REL); gorps
be

prag Require(ComDet,LIB.CONM. TXT): gerps
module COM is sssumed (COMDet);

module M1; begin import X,Y; export Z; . . . endy
ver Y8 . . .3
ond

If module M2 were transisted monolithically, its transiation environment would look much the same.
Suppose, however, thet the definitions of M2 and M3 are lo be sepersted They can be transiated
independently with the following two programs:

prog Seve (M2,L18.M2.REL);: gerps

begin
prog Require(ComDet.LIB.CON. TXT); Require(MlDes,LIB.M1.REL):
Require(M30et,LIB.N3.REL): gorp:
medule COM is sssumed (COMOe?);
medule M1 is sssumed (M10et);
medule M2;
begin import X,Z;
export Wi
module M3 is sssumed (M30ef);
onds
ond

preg Save (M3,LIB.M3.REL);: gorps
begin
preg Require(ComOef,L[8.CON. TXT); Require(M1Det,LIB.N1.REL);: gorp
module COM is sssumed (COMDet);
module M1 is sssumed (M10et);
module M2:
begin import X,Z;
export UWg
! Only the declarations of M2 that are required by M3 appear
module M3; begin . . . ends
ends
ond

1.5. Types

The notion of type is introduced into languages to govern the ways operations are applied to
objects. Types delermine certain properties of data (values), including whet operations on the values
are legel and precisely what their effects are. Every object hes o fixed type. This type is
determinable during translation The <lype neme> is delermined by the signeture of the type as
described in section 1.5.2 Tarten provides certsin built-in types: these include both and
composite types. The user may define new types on the basis of these primitives. Both user-defined
and built-in types sre used to ensure thet the actusl persmeters pessed to the
corresponding formal persmeters. The types of the formel perameters sre siso used to construct the
signature of a routine in order to resolve overiceding ambiguities.

In Tartan, every valus hes exactly one type. This type is determined
= by the declaration of 8 verisble or definition of 8 function

é
;

= by the lexical form and context of occurrence of a litersl

Types sppeer in four conhx;s:

= in declarations, to give the type and attributes of an object

= in type definitions, to give the bese representation of 8 newly-defined type

= in formal perameter lists, to restrict the objects thet may be passed as persmeters
= in function definitions, to give the type of the result

Tertan: Notes and Examples =T
1.5.1. Cheracteristics and Attributes

Some of the properties of a type are the same for all velues and objects of the type. These are
called generic characteristics and are discussed below. Other properties of a type, called attributes,
may differ from one value or aobject of the type to another. For example, in Tartan the type of the
values used to index the elements of an array (the type of the index set) is a generic characteristic,
whereas the exact bounds of the arrsy (which velues are in the index set) are altributes.

The set of attribute nemes associsted with a type and the types of the corresponding attribute
values are given in the definition of the type. For example, objects of type fixed have attributes Max,
Min, Precision, and Scale.

Note that the attributes values of an object are not part of its type. It is therefore possible to
write routines that operste on objects with different attributes. For example, it is straightforward to
write routines that operste on arrays of arbitrary size.

It is often convenient to define families of related types with similar properties, and in which the
differences can be captured through differences in generic properties. A type definition parameterized
in this way can be cast as a generic type definition Members of the family with distinct
characteristics are distinct types.

Generic types are introduced through generic module definitions. For sxample,
M.m Blocker (T:typel ;

begin

type Block (T] (Ordertint) =« srrey(l..Order) of T;
proc Blockl t(var B:Block(T]); begin . . . end
end

defines a set of types Block{..) and a set of corresponding procedures. The definitions

module IntBlock is Blocker (Int];
module RealBlock is Blocker (Real);
module MyBlock is Blocker (MyTypel:

introduce, respectively, the types

Block (Int] (Order:int)
Block (Reall (Order:int)
Blaock (MyTypel (Order: int)

each of which has sn Order attribute. Note asisa that the procedure Blockit is overioaded to operate
on all these types, and that it is inditferent to the Order atiribute of its argument.

1.5.2. Type Names

In Tartan, a <type name> may be either a simple identifier or an identifier inflected with additional
type names. The <type neme> so formed caplures the signature of the type. For example, the <type
name>s in the example above are

Block (Int]

Biock (Reali)
Block (MyType)

Although the definitions of these three types sre closely related (they arise from instantistions of the
same generic module), the types are entirely distinct.

The <type neme>s for the primitive scalar and simple nonscalar types sre the keywords used to
deciare them: fixed, flost, baolean, latch, char, set, string, actname, file.

The <type name> for an array declered “array(a.b) of 0" is “array(l,0]", where [is the <type
name> of 8 and b. See section 1.5.3 for the derivation .

The <type neme> for sn enumeration declared enum{L1,L2,.Ln] is enum{L1L2,...Ln}

The <type name> for an sctivation declared activation of P is activation{P]

The <type name> for a dynamic type declered dynemic T is dynamic T.

The <type name> for a record type is based on the sequence of field names and <type name>s in
its declaration For a record declared °“record(F1:T1, F2T2, .., FaTn]" the <type name> is
“record(F 1:TN1, F2TN2, .., FreTNn]", where the Fi are lists of field names, the Ti are types, and the
TNi are type nemes. Bindings in the declaration do not appeer in the type neme. Thus, in the code

-

PURGREE

Tertsn: Notes and Exsmples] -8-

fragment
proc P(var x:record(a,b:Real)); begin . . . end:
ver yirecord(a,b:Real);
ver 2:record(c,.d:Reall:

variables y and z have different <type name>s and only y is acceplable as a parameter to P.

The <type name> for a variant is “varienl(TT,T1-3V1 T2 5V2,.,Tn=->Vn]", where TT is the <type
name> of the tag, Ti is the ith velue of the tag type, and Vi is the <type name> that corresponds to
the ith value of the tag type. As a resuit, two variant <type>s are the same if they specify the same
<type>s for all values of the tag. Thus for

type Color « enum (red, g-een, blue, yelloul;
variant T:Color (om red -> x:int on blue -> yiMarx(S) on others -> ziarray(l..S5) of Int])

the <type name> is “varisni{Color, red->int, green->array{Int,int] biue->Mark, yellow->array(Int,Int]".

The <type name> for a defined type is the type name given in the type definition, as illustrated
above for Block[...]

1.5.3. Array Types

The built-in array type is in fact a generic family. Arrays have uniform properties in that every
array is a structure for storing a linear homogeneous fixed-length sequence of values indexed by a
given ordered set of values. However, arrays wilh different element types or different types of
indices are distinct types.

This particular generic family of types is so common that Tartan, like most languages, provides
special syntax for it. There is a set of types pre-defined as "array(IxType,EltType}r)® where IxType
is the index type, EitType is the element type, and r is a (subjrange of IxType. The syntax “array(r)
of EitType” is provided as an abbrevistion for each such type. Thus “srray(1.10) of float™ means
“array[intfloat)(1.10)". Iis lype name, “array{intfloat]”, is written “array{int] of float". Thus it we
have deciared

var V: array (1..18) of Float
ver B: array (red..green) of boolesn

the generic type of both B and V is array, but their <type neme>s are different. The <type name> of
B is array{int,float], whereas the <type name> of V is array{color,boclean]

The type “srray(A,B) of T~ is an abbrevistion for “array(A) of array(B) of T". Similarly, the array
accessor “V(i,j)" is an abbreviation for "V(iXj)".

1.5.4. Declarations

The attributes of a variable become fixed at the time of its allocation For static variables, this
occurs during elaboration of the declaration Varisbies of dynemic types do not themselves have
attributes. The dynamically allocated objects they refer to do, however, have attributes: these are
supplied whenever a constructor is executed

The declaration of a static varisble must provide both a <type neme> and vaiues for the attributes
associated with that type. For example, the declsration “var V: array (m.n) of Int", which is an
abbreviation for “var V: srray(intIntYm.n)", computes the current velues of m and n to obtain the
range of the index set, then statically allocates a suitable block of storage. However, the program
fragment &

type Arr(n:int) = dynamic seray (1..n) of Int;

ver Vi Arr;
V ie Arr(S) ()

sllocates the variable V with type Arr, no attributes, and all values undefined. The declaration
allocates a reference to V and sets it to nil. The constructor dynamically creates a new object of
type array(Int) of Int with subscript range attribute “1.5" and associates this object with variable V.
A subsequent assignment lo V might use 8 constructor with a different bound.

1.5.5. Type Checking

The type checking rule for matching actual and formal parameters is based on the types (but not
the attributes) of the parameters. The actusl parameter is acceptable iff the <type name> from its
declaration exactly matches the <type name> of the formal parameter.

Tartan: Notes and Examples .

The attributes of the values returned by a funclion invocation are determined immediately before
calling the functionn They must therefore be specified in terms of input values of the function. For
example, if Str is a type with attribute Length, the definition

tune ConcatiS,!: Str)RsStr; begin . . . end;

would not be legal, since the altributes of the functional resuit are not specified The following,
however, wouid both be legal (but would have different mesnings):

fune ConcatiS,T: Str)R:Str(27); begin . . . ends
fune Concat(S,T: Str)R:Str(S.Length+T, Long!r-h begin . . . end:

This simplifies the implementation, but it precludes the definition of functions that return values whose
attributes can only be determined during the evaluation of the functionn This should not usually be a
stringent constraint; in the worst case a dynamic type may be used to return the value.

1.5.6. Defining Types

A user may introduce a new type into his program with a type definition. The type definition itself
merely introduces the <type name> and defines the representation of the type. Operations are
introduced by writing routines whose formal parameters are of the newly-defined type. Scope
boundaries, particuiarly module boundaries, play no role in the definition of the type. There is, as a
consequence, no notion of the complete set of operations on 8 type.

A type definition may be psrameterized with altributes. The bindings in the formal parameter list
must be const or manifest If a <binding> is omitted, it will be assumed to be const The names of the
formal parameters of the type are available throughout the elaboration of the program as constants,
called attributes. They are accessed by tresting the <ver ident> as a record and the type attribute as
a cons! field Attributes for primitive types are given as part of the type definitions.

1.5.7. Operations on New Types

Operations on new types are introduced by routine definitions. These may be either routines called
with normal invocation syntax or definitions for infix functions. [n order to make it possible to write
basic operstions on the new type, Tartan provides a means of applying operations of the underlying
representation to objects of the new type. Within the scope in which the type is defined, the
qualifier Rep may be used to indicate that the object named by the identifier it qualifies is to be
treated as if it had the underlying type. It is not exportabie. This allows operations on the new type
to be written using operations on its representation When no ambiguity arises, the Rep qualification
may be omitted. For example, we may write

type Mark « [nt;
fune "+" (a,bs Mark)c:Mark; begin Rep'c := Rep'a + Rep'b end:

Rep qualification is intended to be used within a module in order to write primitive operations and to
extend operators to the new type. It is obviously possible to abuse the facility.

An assignment operator is autometically supplied for user-defined types. Although it may be
invoked with any veariable and vaiue of the type, it signals the BadAssign exception if the attributes of
its left and right operands are not identical or if component-by-component assignment would fail. Sizes
of nonscalers are thus guaranteed to be compalible. Clearly, assignment may be well-defined in cases
where this rule disallows it. Such assignment operstors could be provided if user-defined assignment
were compatible with the requirements.

When a module is used to encapsulate the definition of a type and its operations, the type name
and some of the operations must be exported from the module. Types, named routines, fieid
accassors for records, and variables are exported by including their names in the exports list of the
module. The right to apply infix operators, constructors, subscripts, “.all®, or the creste command are
exported by including the specisl names Tinfix, T'constr, T"subscr, T"all, and T"create, respectively, in
the exports list. Literals of enumerated types are exported automatically if the types are exported.

1.6. Parallel Processes

Parasllel processes are controlled with data of two types -- activations of processes and actnames,
or names of activations. An activalion variable must be an inslantiation of a given process; it may
contain at most one activation of that process during its lifetime. An actname variable is a pointer to
an activation. A single aciname may be associated with different instantiations of different processes

& b v r"’ bacil b b g b
S et b - - s e L

it

{ Tartan: Notes and Examples -10-

‘ 3 from time to time.

; Processes are similar to procedures. The syntactic distinction between procedures and processes is
imposed because we believe the potential for parallel execution should be indicated explicitly in the
L program.

Note that activations and actnames control only the parailel control flow of the program. No
synchronization is supplied with the processes; this must be coded explicitly with the primitive latches
or with other, nonprimitive synchronization

1.6.1. Activations

Activations of processes are used to control parallel or pseudo-parallel execution of instances of
| SO the named process. If P is a process and x is a variable of type activation of P, then x can contain an
™ independently-executing instantiation of P, called an aclivation of P. An activation of P may be in one
i of several states: i

- Mint: A mint activation has not yet been started up as a process. The only operations that
can be performed on it are creste, NameQf (i.e, the function that returns the activation’s
name), and the state-interrogation predicates. A newly-declared aclivation or actname is
initislized to the literal mint

- Suspended: A suspended activation can have no effect on any objects; in essence, it is not 1
executing and will not execute until it is activated (see below).

- Active: An active activation is one in which it is feasible for elaboration to take place. |t
may affect objects, and its clock may advance.] :

- Dead: A dead activation admils of no further elaboration. It cannot be revived and it can play

3 no further role in the pragram An activation becomes dead when it exits normally, when it

i fails to handle an exception raised during its elaboration, or when it is named by a Terminate
command.

The extent of an activation variable is determined by the black in which it is declared. When such
a variable is declared, an activation of the named process is instantiated, set to state mint, and
associated with the declared process name. The immediately enclosing block cannot be exited untii all
activations declared within it are dead or still mint. An activation is associsted with exactly one
process, but a single process may be instantiated muitiple times for different activations.

If x has been declared as an activation of P and is in minl state, the statement "create x(..)"
creates a new activation of P in suspended state. The formals of P are bound to the actuals supplied
in the create in the same way as actuals are bound for a procedure call. If a process takes a var
parameter, the corresponding actual parameter must have extent at least as great as the activation’s
extent. For purposes of this rule, an activation passed as a var parameter to a routine is treated as if
its scope were that of the process definition As a result, transiators need no dynamic extent checking.

Except for create, all operations on aclivations are syntactically routine invocations. These routines
conrol the processes and hence the parailelism by chenging and interrogating the state of individual
activations. They are listed in the Tartan Reference Manual.

1.6.2. Fork and Join

The extent rules require each activation to compiete (exit or terminate) or still be mint before the
block in which it is declared can exit This provides an implicit join operationn A fork can be
obtained with a series of creates and aclivates. For example,

begin

process P(const x:[nt); begin . . . end;

ver Vi array(1..18) of sctivation of P;

for i in 1..18 do create V(i) (i); asctivate(P(i]) od

ond

declares ten activations of a process, uses create lo start them up with different values of the input

™t o e b4 i o

Tertan: Notes and Exemples alldn

variable (using the loop index as the input value as well as to index the array of activations), moves
each activation into active state, and waits at the end of the block for the activations to terminate.
After starting the activations of P, the main program may continue with other computation, monitor the
progress of the activations, or simply wait for the activations to terminate.

1.6.3. Activation Names

An aciname may name any activation An aciname varisble is not permenently associated with any
particular activation, and there is no requirement about the state of the activation named by an
actname when the extent of that actname variable is exiled or terminsted This permils routines to
operate on activations without knowing what processes they sre activations of. For example, it makes
it possible for routines that sre generally useful for managing activetions to be defined in a large
scope without requiring all process definitions and activation verisbles to include thet scope. A single
activation may be named by more then one actname. There is no dangling reference problem: Even
though the reference (actrame) may outlive the aclivation, the activation will be deed (lerminsted or
mint) after its block is exited (and thus no unexpected computational resuils can be induced).! Since
the create command cannot be applied to an actname, the process cannat be restarted

Activation varisbles may not be the objects of assignments and mey not appeer in result parameter
positions. However, esch activation has a name, of type aciname. This name may be obtained by
invoking the function NameOf on an activation All operations on activetions except creste exiend to
actnames. Thus, Suspend(NameQf(x)) has the same effect as Suspend(x) The specisl operation Me()
returns ths aciname of the current process. [n addition, actname variables may appeer in assignments.
(Thus users mey write programs that operste on anonymous activations, for example to do
special-purpose scheduling) The extent of an actname verisble may dominate the extent of the
activation it names. [f that situstion arises, after the extent of the activation is exiled, the actname will
refer to a terminated process, and no damage can be done.

The Notify operation on activations or actnames signals the Terminste exception in the
currently-executing statement of the activation nemed by the command. Within the activation in which
it is raised, Terminale is treated like any other exception This is the only mechanism provided by
Tartan that enables one activation to interrupt ancther.

1.7. Unresolved Issues

We did not obtain solutions to all the Ironman requiremerts in the two-month period allotted to this
design. In this section we sketch the way we would address the unresolved issues.

1.7.1. Machine-Dependent Code
Machine-dependent code presents lwo issues: definition of operations and definition of data. Tartan
will permit separstely-defined machine-dependent routines to be incorporated in the same way as

other separate definitions. This is consistent with the Steeimen requirement. We have not yet
sddressed the problem of machine-dependent declarations (data layout).

1.7.2. Simulation

We believe Tartan supports @ programmed solution to the simulation requirement. For example, the
facilities of Simula 60 can be provided for Tartan programs:

= Tarten activations can serve the same function as Simula activities.
= A coroutine call discipline may be programmed using the routines Activate and Suspend.

-~ A scheduler that mensges simulaled time can be programmed, again using operations on
activations.

1The activation record itseit may be allocated in the heap: it does not become eligible for garbage
collection untii ail references have been broken. Thus no actname can become an uncontrolled pointer.

I

e

DT T N R A

A

.
!
!

e R e iy * - g e A G i B A Bl ke i 4l

—_— 2 -) e v LR S S R R

Tartan: Notes end Examples -12-

1.7.3. Definition of Integers

In the reference manusl we chose fixed as a primitive and defined Int as a special case by
choosing attributes appropriately. We believe it is pcssible to treat int as primitive and define Fixed
as nonprimitive by associsting range/precision bookkeeping with the operations.

1.7.4. Low-Level Input and Output

We included file as a primitive dats type but did not specily its properties. Given the ability to
write machine-dependent code to access the devices and the sbility to use processes to maintain state
(and hence to avoid, for example, re-opening 8 file for sach operstion) we believe a wide variety of
low-level [/O can be implemented effectively.

1.7.5. Higher-Level Synchronization

Numerous synchronization disciplines have been proposed or #re in active use. None of them
clearly dominates the others; none is appropriste in all cases. We have elected to provide a very
primitive synchronization tool, a latch. Conceptually, a latch is 8 spiniock: failure to sieze such a lock
does not necessarily relesse the processor. By choosing a primitive mechanism, we hope to avoid
pre-empting the implementation of higher-level synchronization techniques. We believe alternative
mechenisms can be implemented effectively in Terten Indeed, we believe that this is the correct
approach.

e

e

o e 3 S A Gt ¥ S R i B T L s ek e o o A

Tartan: Notes and Examples -13-

' ‘2. Programming Examples

4 Several sample Tartan programs are presented here. Some show the use of various features of the
Pt janguage: others provide programmed (nonprimitive) solutions to certain ironman requirements.

4 ' 2.1. Simple Static Data Type

the length of the buffer is an altribute of the type. This implementation keeps
current head of the buffer (Heed) and a pointer to the elsment one past the current end of the buffer
(Tail). All arithmetic on these pointers is done modulo the size of the buffer. .

, ;mm CircularBuffersiTitypel;

A m CircBut(Tl, ! type, attribute Size

] Clesr, Append, Remove, Full, Espty, ! routines

4 BuiQvel; ! exception

2 type CircBut (T] (Sizeslnt) = recerd(Bfiarrey (8. .Size-1) of T, Head,Taili Intl;
% excoplion BufOvf!;

E proc Cleor (resuit C: CircBuf(T1); begin C.Head:=8; C.Tailt=d ends

' proc Appendiver C: CircBuf (T, const VaiiT);

-~ begin

¥ it Full(C) then signel BufOvfi;

C.Bf(C.Tail) := Yaig
C.Tail 1= mod(C.Tallsl, C.Sluh
ond;

; proc Remove{ver C:CircBuf(T], resuit Yai: T)y
! begin
msert - EmptyiCl,y

E! Val :e C.B8¢(C.Head):
ki C.Head :e mod(C.Hesd+l, C.Size):

k| onds
l \ fune Ful | (C:CircBuf (T))F:boolean; begin F 1o (C.Hesd = mod(C.Tail+l, C.Size)) ends
j fune Empty(C:CircBuf (T))E:boslesn; begin E 1« (C.Heed = C.Tail) ends

i end ! module CircularBuffers
2.2. Simple Dynamic Data Type

We define a list-processing module. Each list cell contains a valus of a specific type; the definition
of the module is generic in this type.

generic module ListOef (T:typel;

begin
exports List(T], Data, Next, ! type and field names
Cleer, I[nvert, Delete, Last: | routines
type List(T] « dynemic record (Data:T, Next:List(Tl]:
9 & proe Clear (rosult L:List(T]1); begin L t= nil ond:
! ! proc [neert(ver EltiList(T], ValiT);
¥ begin ,;
| WEIt = i ':
% | then Eit 1= Liet(Tl’ (Val,ni) |
2 olse Elt.Next t= List(T)’ (Val,E)t.Next)
ends

proc Delate(ver E1tsLiat(T1}; beginsesert EIt » nily Elt 1o Elt.Next onds ‘
fune Last(LiList(T))psList(T] -‘
begin <

E | p te Ls
E | y H p = nil then while p.Next =« nil do p t= p.Next od fis
onds

i end ! module ListOef

G b e A U D et U “uww T

Tartan: Notes and Examples -14-

2.3. Selecting Representations

Although Tartsn trests types with different representations as different types, it is possibie to use
the variant and case facilities to define generic lypes that provide simiilar types with different
representations. The representation is fixed during translation, when the generic definition is
instantisted.

This example defines two alternative representstions of Queues. [t hes two generic parameters.
The first is the type of the elements being queued, and it is used as in the previous examples. The
second is 8 menifest constant, which is used to select which representation of queues is to be used.
Since the variant is fixed during translation, there should be no loss of execution efficiency.

The two representations of queues are defined in terms of the circular buffers of section 2.1 and
the lists of section 22

goneric module Queuelef (T:type. F:onum(Fix,Flex]];

begin

exports Queue (T], | type. attribute Size
Cleer, Enq, Oeq, Empty, Full, | routines
QQvti: { exception

module Lst is ListOef(T]:
module CBf is CircularButfers(T];

type Queue(T) (Size:Int) =
veriant menifes! Fx: enum(Fix Flex] 1= F
[on Fix =» CircBut(T] (Size) on Flex -> List(T])}

exception QOvfi; ! can oaniy be reaised on Queue(Fix]
proe Clear (result Q: Queue(T));

begin

case F on Fix -> Clear (Q(Fix)) on Flex -> Cleer(Q(Flex)) esse

ond;

proe Enqiver Q: Queue(T), const Vai: T);
begin

case F
on Fix <> Append(Q(Fix), Val) { on BufQvt! <> signel QOv¢! }
on Flex -> Insert(Last(Q(Fiex)), Val)
esae

ond;

proec Deqiver Q: Queue(T], resuit Vai: T);
begin

case F
on Fix <> Remove(Q(Fix), Val)
on Flex -> begin Val 1= Q(Fiex).Data; Delete(G(Fiex)) ond
esse

ond;

fune Empty (Q:Queue (T])E: boolesn;

csse F
on Fix <> E 1e Empty(Q(Fix))
on Flex => € se (Q(Fiex) o mil)
esar;

fune Fuil (Q:Queue (T1)E: boolesn;
begin
csso F on Fin <> E te Full (Q(Fin) .FixRap) on Flex => € 1« lolee esse
onds .

end ! module QueueDet

e

I R —

2

o s o e g Y A RS

Tartan: Notes and Examples

T

_2.4. Safe Data

! Tartan does not provide indivisible operators for fetching and storing velues. If pearsilel processes
&t are opersting, the programmer needs to tske precautions to ensure the indivisibility of these
operations. This progrsm illustrates a solution that will work well with types for which fetching and
storing the whole value makes sense.

begin
module Complex is assumed(Complexiibl; ! Complex exports type Comp '
;%m SafeQata(T:typel; |
oxports Safe(T], Get, Put: | type nese, fetch snd store routines . q
type Sate(T] = record (Lk:latch, Oate:T];
func Get(var S:Safe(T])R:T; begin Lock(S.Lk)s R :e S.Datas Unlock (S.Lk) ends
proe Put(ver S:Sate(T], var RiT); begin Lock(S.Lk); S.0ata 1= Ry Uniock (S.Lk) end:
ends ! module Safelata
module SateComplex iz SafeData(Compl;
ver x,y,2: Sate(Compl: 3
Put(x, Comp®(1..8.)); !

Put(y., Comp® (8.,1.));
Put(z, Get(x)+Gatiyl):

onds i -
Function Get takes a Safe(T] (here, a Safe{Comp]) as a var persmeter. Since the Lk field is not]
oxpoﬂodfrunmod‘o“oﬂdl.sdmyuuthmud“uiod‘mmlohhlnordorto 3
| protect the fetch.
‘:* Procedure Put specifies var persmeters in both positions. Even though it does not siter R, a const
3 specification would cause a copy.

2 The generic SsfeData module is instantisted specifically for numbers of type Comp (the type
: exported by module Complex).

In the main program, the Comp consiructor is used twice to generste velues to store in the
varisbles. The newly-consiructed vaiuss in the calls on Put are sccessible only in this program, so
the constructor itself does not need to be indivisible. In the third assignment (cail on Put), the
sddition is the addition for type Comp exported by module Campiex.

i o

FeReTeRg e e RER S S

Tartan: Notes and Examples -16-

3. Optional Additions to the Language

In the course of the Tartan design, we encountered a number of features that seemed attractive but
‘could not be admitted because they violaled either the Ironman requirement itself or the rule of
minimality that we adopled for the design experiment. We list some of these here, indicating what
they might add to the language and what they might cost.

Abbreviations for compound names. The import rule as stated can leead to the need for a substantial
amount of qualification because all exported names, especially of lypes and routines, are potentiaily
available pervasively. A renaming facility would reduce the need for explicit qualification. The
renaming facility might involve renaming on import, or it might be a genersi with-clause. It would add
convenience and probably improve the readability of the language. However, it would introduce a new
construct in the language and introduce a new way lo creste alisses.

Less-then-giobel storage pools. As the langusge is defined, ail dynamically sllocated variables share
the same hesp. [t wouid be possible to add the ability to declare a local sub-heap (zone) on the
stack and allocate designated dynamic veriables from it instead There might be several zones active
at once, with certain groups of variables sharing different ones. Alternatively, zones might be
associated with blocks and all dynamic types defined in a block would share storage from a commun
20ne. The cost is an additional mechanism and more complex scope rules. The benefit would be more
control over dynamic variables and possibly more efficient storage recovery.

Resumable and paramelerized exceplions An interrupt-style exception that has the semantics of a
procedure call (resuming where it was raised) would be a useful thing to add It would provide better
control over many exception situations. Almost all the necessary mechenism must already be there to
deal with the Notity commend (i.e., the Terminate exception). In addition, the ability to pass parameters
would be heipful, although it would complicate the syntax.

Richer control constructs. A loop exit and explicit function return could reduce the number of gotos
and awkward conditional statements in programs. A richer collection of loop structures (downward
counting, repeat with exitif, and sa on) wouid add convenience. However, esch such construct adds to
the size of the language.

Assertions in declarations. As presently formulated, assertions are statements. It could be useful to
permit. them in declerstions in order to check vasluss of altributes and to guerd initialization
expressions. [t would, however, require additionsl complexity in the syntax.

User-definable assignment. As noted in section 1.5.7, a default definition of assignment cannot
anticipate all reasonable type definitions and all situations in which assignment mekes sense. Only the
programmer has the knowiedge o do so. Tartan already permils infix operstors to be avericaded for
new types: there would be little additional cost for allowing “«" to be overioaded as well.

References

[l]&pﬂMd&WMvawaw& smming Languages,
Revised “Tronmen®, July 1977, AM in SIGPlan Notices, 12, 12, Doumbor 1977 (pp.
39-54)

(2] Mary Shaw, Paul Hifinger, Wm A. Wulf, “TARTAN Langusge Design for the [ronman
Requirement: Reference Menusl®, Carnegie-Meilon Universilty Technical Report, June 1978.

e simnicne,

llnhmdmwlmitmmbmtomWhemdame
even if the routine does not elter it

